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Abstract— The article presents the innovative remote
microwave soil drought index (RMSDI) developed for assessing
intensity of soil drought (SD) and tested in the Kulunda arid
steppe (West Siberia). RMSDI is based on satellite measurements
of brightness and thermodynamic temperatures, including depen-
dences of radio-emissivity on volume fraction of water (W) in
soil calculated from soil dielectric characteristics. To define W
and RMSDI, we employ the data on brightness temperatures
obtained from soil moisture and ocean salinity (SMOS) and
thermodynamic temperatures–from moderate resolution imaging
spectroradiometer (MODIS). The territories falling within a
SMOS pixel are major objects of our study (cell 4 010 458 discrete
geodetic grid (DGG) icosahedral Snyder equal area (ISEA) 4H9).
According to the MODIS data, the lakes and water source areas
in a SMOS pixel makes up less than 0.1%. The total area
of forest and water sources is insignificant (less than 0.1%).
By granulometric composition, soils are referred to slit loam
and loam ones. We offer the constructed for the test area
graphs of seasonal dynamics of brightness and thermodynamic
temperatures, radio-emissivity (χ), W , and RMSDI. Dependences
of W(χ) are given for soils with different values of bound water
(Wt). The established standardized dependence χt(Wt) makes it
possible to express the value of χt via Wt . The satellite sensing
data and dielectric characteristics of soils are used to calculate
the values of W and RMSDI.

Index Terms— Remote microwave sensing, soil drought (SD),
soil moisture and ocean salinity (SMOS), soil volumetric mois-
ture, West Siberia.

I. INTRODUCTION

SOIL droughts (SDs) are hazardous natural phenomena,
which occur at soil moisture (SM) content insufficient for

normal plant growth. Regionally, these events differ in meteo-
rological conditions, climate features, atmospheric circulation,
and soil properties. Prolonged droughts, periodically observed
worldwide in many agrarian regions, contribute to crop yield
reduction that brings to rise in crop production costs.

Remote monitoring of SD is based on the laws of reflection,
emissivity, and absorption of electromagnetic waves by soil
and vegetation. To estimate SD, numerous remote indices in
the optical range have been developed. However, their appli-
cation is limited because of dependence on cloudiness, water
vapor in the atmosphere, and precipitation [1], [2], [3], [4].
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To improve accuracy and reliability of optical remote mon-
itoring methods, drought indices (DIs) are identified using
sensitive to change SM remote data in the microwave range
[5], [6]. SM is insufficiently informative though along with
soil temperature it is the main parameter that quantitatively
characterizes SD. For example, salt marshes and takyrs have
high SM, but their vegetation cover is either extremely scarce
or absent at all.

Remote indices based on the use of the AMSR-E data
in cm and mm bands have become widespread [7], [8].
Surface roughness and dielectric constant of soil are taken
into account in the advanced microwave scanning radiometer
(AMSRE) L3 data-based monitoring of the Tibetan Plateau
drought [9]. In order to monitor the drought process in China
using the AMSR-E data [10], a remote index of drought
(RID) based on the relationship between drought and changes
in SM qualitatively reflecting drought development and its
spread have been proposed. To calculate RID for the studied
period, the minimum/maximum values of SM are chosen and
compared with those of RID (from 0 to 100). In [11] and
[12] the AMSR-E data and normalized multiband DI are
used to obtain a combined SM. To monitor the strongest
(over the past 100 years) drought in China (2009–2010), the
microwave polarization index based on AMSR-E data [13] is
employed.

In [14], different DI derived from the data of moderate
resolution imaging spectroradiometer (MODIS), AMSR-E,
etc., are compared. The findings suggest that in varying
climate conditions these indices have their own strengths
and weaknesses. For global monitoring of SM, the data of
ASCAT installed on the METOP series satellites are used.
The ASCAT data contribute to the real-time monitoring of
droughts on a global scale, the identification of anomalies in
SM and estimation of the drought severity index [15], [16].
Hernández-Sánchez et al. [17], present the relationship
between the microwave polarization DI and the soil water
deficit index using soil moisture active passive (SMAP) mis-
sion to define drought periods over a rainfed agricultural area.
In [18] and [19], to reduce a pixel size, the SMAP data and
the results of radar observations (sentinel-1) are used.

The standardized brightness temperatures (TB) index based
on the SM and ocean salinity (SMOS) data and distinguished
by better spatial-temporal resolution is described in [20].
In [21], SM calculated from the SMOS data is compared with
meteorological indices for drought monitoring in northeastern
China. It is found that SM correlates with the standardized
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Fig. 1. Map of the study area: 4 010 458—the cell of DGG ISEA 4H9,
black and white outline—a SMOS pixel.

precipitation index, the standardized precipitation and evap-
otranspiration index, and the SM anomaly percentage index.
In [22], the improved DI based on passive microwave remote
sensing (satellite FengYun) and optical/infrared data (MODIS)
is proposed. This DI is a combination of the underlying surface
T , SM and vegetation indices.

The SM water use efficiency index presented in [23] rests
upon the use of SM data and normalized difference vegeta-
tion index (NDVI) for assessing susceptibility of an area to
drought. NDVI is employed to identify the areas with low
vegetation biomass. In Zhang et al. [24], describe the multiple
remote sensing drought index based on remote sensing of
SM, precipitation, and NDVI. The data on SM, precipitation,
and land surface temperature are also used to calculate the
microwave-integrated DI [25].

A remote method for determining drought due to TB

measurements (SMOS, AMSR-E/AMSR2) and estimations of
water reserves according to the gravity recovery and climate
experiment (GRACE) data is proposed in [26].

The SM anomaly percentage index is applied in monitoring
of agricultural drought in India (2002–2014), as well as in
spatiotemporal analysis of SM with the use of the AMSR-E
(2002–2010) and SMOS (2010–2014) data [27], [28]. In [29],
a review of microwave methods for remote monitoring of
agricultural drought resting on the SMOS, SMAP, ASCAT, and
AMRS-E data is presented; the main indicators of droughts
taking into account SM are described. The shielding effect
of vegetation cover on the underlying surface emissivity is
considered. In [30], a review of DI is given. Interestingly,
none of the existing indices can predict drought with high
accuracy and reliability, especially in modern conditions of
unpredictable climate change.

The main goal of our study is to develop a remote
microwave soil drought index (RMSDI) taking into account
emissivity characteristics of specific soils, as well as the phase
composition and dielectric characteristics of SM.

II. DATA AND METHODS

This article describes the developed RMSDI tested in
Altai Krai. Field studies were carried out in the Kulunda steppe
(KS) (Fig. 1).

The research methodology was discussed in detail in [31].
Here, seasonal dynamics of TB (L1C) were studied in
cell 4 010 460 discrete geodetic grid (DGG) ISEA 4H9 located

to the north from cell 4 010 458 of the present work and
characterized by different physical and dielectric properties of
soil. The error range for the selected cells of DGG ISEA 4H9
(diameter: 16 km) and the test area (width: 300 km) was within
±3 K [32], [33].

The SMOS L1C dataset (MIR_SCLF1C products, versions
620 and 724) contained brightness temperatures correlated
with the Earth surface radiation within individual cells
of the ISEA 4H9 DGG and recorded by MIRAS anten-
nas above the atmospheric surface at different incidence
angles, as well as their values needed for further compu-
tational procedures (layers incidence_angle, azimuth_angle,
geometric_rotation_angle, faraday_rotation_angle). The con-
version of TB values from the antenna-related coordinate
system (BT_Value_X, BT_Value_H) to the surface-related one
(BT_Value_H, BT_Value_V), the so-called “rotation” of the
polarization vector, was performed using the SMOS-BOX
package version 5.8.1 in the SNAP software environment. The
description of this procedure was given in [33].

We used the SMOS L2SM dataset (MIR_SMUDP2 prod-
ucts, version 700) containing the soil_moisture layer (estimate
of SM in soil layer) presented in [33]. From the analyzed
data array we excluded: 1) values burdened by the influence
of radio frequency interference (according to the quality flag
RFI1); 2) values obtained outside the Alias Free (AF) region,
free from overlapping image replicas (by the AF flag); 3) data
with TB errors exceeding 5 K; and 4) data with polarization
coefficient (TBH/TBV) outside the range of 0.01–0.99.

For the regional monitoring of SD, satellite measurements
of brightness (TB) and thermodynamic (T ) temperatures,
field measurements of volume fraction of water (W ) in soil,
laboratory measurements of the refractive index (n) and the
absorption factor (κ) were employed. The relationship between
TB and n, κ of soil was given in [34]. L1C SMOS [35] was
involved in measuring TB on horizontal polarization at angle
of θ = 42.5◦. The L1C data were represented as DGG ISEA
4H9 [36] (Fig. 1). The linear cell size and area made up 16 km
and 195 km2; the longitudinal and transverse resolution of the
L1C product–64 and 35 km, respectively.

Values of T were estimated from MOD11A1daily data
available in the database LP DAAC (https://lpdaac.usgs.gov).
This product contained values of T with a resolution of 1 km
and a fixed measurement time [37]. Time difference between
MODIS and MIRAS (SMOS) measurements did not exceed
2 h. The resolution of MIRAS (40 km2) and MODIS (1 km2)

varied significantly. The MODIS data analysis showed minor
(2 K) variations of T within each SMOS grid cell. Therefore,
the MODIS product resolution can be lowered to the level
of the SMOS data by means of data smoothing. To minimize
differences between soil and vegetation temperatures, we used
morning measurements when their temperatures were approx-
imately the same.

The selected major sites fell into a MIRAS pixel
(cell 4 010 458). The study area was a flat plain cov-
ered by stunt vegetation with negligible biomass. During
the measurement period, vegetation suffered from insufficient
moisture caused by drought. Lots of plants perished because
of water deficit. According to the MODIS data, the lakes
and water source areas in a SMOS pixel accounted for less
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than 0.1%. The total area of forest was also insignificant.
According to the United States Department of Agricul-
ture (USDA) classification, the study area was represented
by silt loam and loam. In natural conditions, density (ρ),
temperature (t), and volume fraction of water (W ) in the
surface soil layer (0–5 cm) varied as ρ = 1.06–1.35 g/cm3;
ρdry = 1.05–1.2 g/cm3; W = 0.05, . . . , 0.28 cm3/cm3;
t = 18, . . . , 60 ◦C.

The data of the long-term agrohydrological observations
were evidence of weak SD recorded at W ≤ 0.08 cm3/cm3,
and severe drought–at W ≤ 0.055 cm3/cm3. Biologically
determined wilting point varied from 0.084 to 0.091 cm3/cm3

(at ρwet = 1.08–1.15 and ρdry = 1.0–1.07 g/cm3).
According to [32], at remote sensing in the decimeter range

from SMOS (1.4 GHz and low spatial resolution) of poorly-
moistened soils of the dry steppe zone with a flat surface and
low vegetation biomass, the following formula may suit:

TB = χ · Tef (1)

where χ , Tef are the emissivity and effective temperature of the
skin layer of the underlying surface, χ = 4n/((n + 1)2

+ κ2).
To establish experimental dependences χ(W ), we measured
n, κ of soils, n + iκ =

√
ε, ε′

= n2
− κ2, ε′′

= 2nκ (ε′, ε′′

are the real and imaginary parts of complex permittivity ε).
On the soil surface, T depended on weather conditions and

varied during the day from 298 to 333 K in summer. From
the depth of 15–20 cm, T stabilized and changed within
296–298 K during the day. SMOS flew over the study area at
07:00 in the morning and at 20:00 in the evening local time.
To perform an experiment, we selected the morning flyby data.
By this time, T of the soil surface cooled down to 298–303 K.
The experimentally established dependence T (Z) has the form

T = 299.92 − 0.07378 · Z , 0 ≤ Z ≤ 70 cm.

To calculate Tef, we used the ratio derived for the study area

Tef = T0 − 0.07378/(0.13644 + 3.3354 · WZ ) (2)

where WZ is the gradient W in the layer Z . In summer, the
dependences WZ have the form WZ = W0 ± A · Z , where
A = (2–6) 10−4 – the empirical coefficient depending on
weather conditions.

This ratio was derived for the study (certain) territory for
the morning soil temperature gradient. Note that its application
to other hours and territories would require some adjustments.
As follows from relation (2), any volumetric moisture in the
skin layer is Lef 1T = (Tef–T0) < 1 K.

To establish experimental dependences χ(W ), we measured
n, κ of soils. A detailed description of the laboratory setup and
the technique of dielectric measurements was given in [38]
and [39]. To measure dielectric properties, we used a bridge-
type laboratory setup based on the FK2-18 phase-difference
measuring device (Fig. 2) consisting of major elements:
G—a high-frequency signal generator G4-78 (1.16–1.78 GHz),
MPD—a matched power divider, LVL—a transmission line of
variable length, A1, A2, A3—matching coaxial attenuators,
I–a gauge unit of a phase meter, A—a reference channel,
B—a measuring channel with a container (C) for the sample.

Fig. 2. Scheme of a bridge-type laboratory setup based on a phase-difference
measuring device.

The container was configured as a coaxial waveguide. The
signal produced by the generator was transferred to MPD and
shared equally between the reference (A) and the measur-
ing (B) channels. In the absence of the test specimen in the
container, a zero value of the phase difference and amplitudes
was set on the phase meter. Next, the tested sample was placed
into the container; the phases and attenuation were measured
by the phase-meter indicator.

To describe dc of samples, we applied the n and κ .
Soil samples were placed in a completely filled measuring
container (the brass coaxial waveguide of 37 mm long, with
diameters of the outer shell and inner core of 16 and 7 mm,
respectively) with further measuring the module and phase of
complex transmittance of electromagnetic waves (1.41 GHz)
through the tested specimen. A measurement resolution of
the phase difference in signals (ϕ) made up 0.2◦, attenuation
(A) = 0.2 dB. Phase measurement errors 1ϕ ≤ (1 + 0.034
ϕlimit + 0,075 A), attenuation 1A ≤ (0.5 + 0.02 Alimit +

0.03 A), where ϕlimit = 6◦, Alimit = 3 were limit values of the
scales used.

The sources of probable measuring errors for dielectric and
emissivity characteristics of soil may be: 1) inaccuracies in
determining the specimen length; 2) incomplete filling of a
waveguide container with specimens; and 3) variations in the
density of different samples. It should be noted that a properly
prepared specimen minimizes all the errors.

For a quantitative description of water contained in the
samples, we used volume (W = VW /V [cm3/cm3]) and mass
(WM = MW /M[g/g]) fractions related as: W = (ρwet/ρw) ×

WM , where V, VW – the volumes of wet soil and water;
M = Mdry + MW , M, Mdry, MW –the mass of wet, dry samples
and water; ρwet, ρW = 1 [g/cm3

]–the densities of soil and
water.

The equipment was calibrated before and after the mea-
surements. On completing dielectric measurements, the sample
was extracted from the container and weighed on analytical
balance to the nearest 0.0001 g. To change W in the range
W > Wt , a soil specimen was dehydrated at room temperature
for 1–10 min, while at W < W1 it was kept in a drying
chamber at 105 ◦C.

Dielectric properties of soil were measured at gradual drying
at W of 0.45–0.006 cm3/cm3. Before measuring, each sample
was ground and thoroughly mixed till the unified condition.
Depending on W and packing density in the measuring con-
tainer, the mass of study samples made up 7–10 g, ρwet =

1.2–1.4 g/cm3, ρdry = 1.1–1.3 g/cm3.
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Fig. 3. Dependences of n, κ on W (ρdry = 1.06 g/cm3).
(a) and (b) Dependences of χ (1–v-polarization, 2–h-polarization) on W.

TABLE I
NUMERICAL VALUES OF n, κ FOR DIFFEREN W

To validate satellite data, we collected soil samples at test
sites and measured SM using the gravimetric method in labora-
tory conditions. The time difference between soil sampling and
satellite flyby over the given territory did not exceed several
hours. For comparison, we used the data obtained from the
weather station.

III. RESULTS

For the study territory, the generalized dependence
(n, κ)(W ) [Fig. 3(a)] was approximated by straight lines
and calculated from the measured n, κ of soils falling into
a MIRAS pixel. Dielectric measurements were carried out
within the range W = 0–Wmax = 0.45 cm3/cm3. Two intervals
of W with different behaviors of n and κ are distinguished
on the graphs: 0–Wt and Wt –Wmax. Wt = 0.11 cm3/cm3

corresponds to the moisture content at the transition from
bound to free water. Dielectric properties of bound and free
water differ markedly [40], [41]. Table I represents values of
n0, κ0 (W = 0, ρdry = 1.06 g/cm3), nt , κt (W = Wt ), nw, κw

(W = Wmax) [derived from Fig. 3(a)]. Using the established
relationships, the inverse dependence W (χ) can be represented

TABLE II
COMPLIANCE OF W AND RMSDI WITH A DEGREE OF

MOISTURE USED IN AGROMETEOROLOGY

Fig. 4. RMSDI (W ) dependence: 1–7–moisture degree (Table II).

as follows:

W =

{
A − B · χ, χt ≤ χ ≤ χ0

C − Dχ · χ, χw ≤≤ χt .
(3)

For horizontal polarization and θ = 42.5◦, χ0 = 0.94; χt =

0.81, χw = 0.50 after simple transformations, let us write
relation (3) in the standardized form

W =


Wt

χ0 − χ

χ0 − χt
, χt ≤ χ ≤ χ0

Wt + (Wmax − Wt )
χt − χ

χt − χw

, χw ≤ χ ≤ χt .
(4)

The value of χt can be obtained from simultaneous remote
measurements of χ and field measurements of W , or from
dielectric measurements of soil permittivity at different values
of W . It is worth noting that field measurements of W are
rather laborious; dielectric measurements require specialized
equipment and software provision. In contrast to χt , the
measurements of Wt are easily performed by most soil labo-
ratories.

For a wide practical application of relations (3) and
(4), we approximate χt (Wt ) (h-polarization) with a linear
dependence

χ t = 0.62521 − 0.69621 · Wt , σ = 0, 0097, R = −0.97
(5)

where R is the correlation coefficient, σ is the root mean
square error.
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Fig. 5. Seasonal dynamic of TB (1), T (2), W (3), algorithm SMOS (4), natural field measurements (5), wilting point (6).

Fig. 6. Seasonal dynamics of W (circles), RMSDI (squares): 1–7–moisture degree (Table II).

SD occurs at W ≤ W t . In this case, only inaccessible
(to plants) bound water is present in the soil. The value χt

may serve as a radio-physical characteristic of SD. Values of
χ correspond to the following regimes of SM: χt ≤ χ ≤ χ0–
the lack of water in soil–drought; χw < χ ≤ χt – the amount
of water sufficient for plants. SD conditions are realized when
χt ≤ χ , reaching its maximum at χ ≈ χ0. To assess the degree
of SM (including drought and waterlogging), we introduce the
RMSDI as the ratio of interval lengths in different moisture
ranges

RMSDI =


χt − χ

χ0 − χt
, χt ≤ χ ≤ χ0

χt − χ

χt − χw

, χw ≤ χ ≤ χt .

The relation between RMSDI and W is

RMSDI =

{
(W/Wt − 1), χt ≤ χ ≤ χ0

(W − Wt )/(Wmax − Wt ), χw ≤ χ ≤ χt .

Table II shows the numerical values of W and RMSDI
corresponding to gradations of moisture degree of the territory
used in agrometeorology. RMSDI (W ) dependence is shown
in Fig. 4.

Figs. 5 and 6 present graphs of seasonal dynamics of TB ,
T, W, and RMSDI for the test site in 2022. Values of W and
RMSDI were calculated from satellite measurements of TB

(SMOS) and T(MODIS) using (1) and (2). It can be seen that
W < Wt = 0.11 cm3/cm3 for a significant part of the summer
season. RMSDI proves the lack of SD in this area (Fig. 6).

In Fig. 6, dotted lines mark RMSDI intervals corresponding
to different gradations of moisture degree. In this area, soil
wetness (SW) is insufficient almost during the entire growing
season, including the periods of weak and severe drought.
Field measurements of W prove this fact (Fig. 5).

The error of remote determination of W depends on density,
texture, salinity of soils, landscape diversity, and vegetation
biomass. To estimate W , the L2SM SMOS algorithm is used
with a declared error less than 0.04 cm3/cm3 [33]. From Fig. 6
it follows that in contrast to WNF, (natural field measurements),
WSMOS values show greater data scattering than W . In some
cases, the discrepancy between W , WSMOS, and WNF can
be associated with precipitation occurring during the time
between the satellite and field measurements of W .

Generally, the application of the L2SM SMOS algorithm
for estimating SM values suits researchers and end users.
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Fig. 7. Schematic maps of W. (a) RMSDI. (b) L–Lakes Kulundinskoye and Kuchuk; F–relict belt forests.

Unfortunately, in some cases, for solving practical problems
and when dealing with specific sites of the Earth surface
commensurate in area with the grid cell size, a satisfac-
tory agreement between the values of Soil_Moisture of the
MIR_SMUDP2 product and contact measurements of moisture
in effectively radiating soil layer may be absent. For such
special cases, adjustment of models and algorithms of SMOS
is ill-advised. Therefore, the development of alternative algo-
rithms based on the SMOS data of the first processing level
ensuring a satisfactory result in the mentioned particular cases
is still of interest.

Based on the results of satellite measurements of TB , T,
and dependences W (χ ), we have constructed the schematic
maps of spatial distribution of W and RMSDI (for Wt = 0.11)
(Fig. 7).

Fig. 7 presents the schematic maps of spatial distribution
of W and RMSDI for the territory in the south of West
Siberia and Kazakhstan (June 19, 2022) in order to assess
its moisture content and detect sites with a deficit of W .
Though the drought index and SM are interrelated, they
are intended for different tasks and purposes. The drought
index expresses drought quantitatively according to the level
of moisture gradation accepted in agrometeorology (Fig. 3).
Unlike RMSDI, W is a characteristic of soil. The same W
for soils with different Wt can be classified as drought and as
waterlogging (for sand: Wt = 0.02, for silt: Wt = 0.25–0.30).

IV. DISCUSSION

The algorithms for calculating W and RMSDI were tested
in the landscape-homogeneous site. In this study, we did not
pose the problem to consider landscape diversity (mosaicism)
since this technique was well developed before.

The distinguishing feature of RMSDI is the use of dielectric
measurements in calculations of χt and Wt , the microwave
satellite data–in estimation of TB and infrared–in T . To do that,

we employ the SMOS L1C and MODIS data. The centimeter-
range satellite data (AMSR-E, ASCAT, etc.) can be used to
calculate RMSDI. In this case, the skin layer does not exceed
1–5 cm, in contrast to the decimeter range (SMOS, SMAP)
where the skin layer can reach 15–20 cm (rooted soil layer).
Since the surface soil layer (1–2 cm) in summer often contains
less moisture than the underlying root one (15–20 cm), the
use of TB satellite data (in the centimeter range) and related
calculated low values of SM can lead to misdiagnosis of
drought.

An important factor for the widespread practical applica-
tion of RMSDI is a feasible replacement of highly specific
dielectric measurements of χt and Wt [Fig. 3(a) and (b)]
by χt calculated from standard soil measurements Wt Wwp
(wilting point) that ensures the data availability (to end users)
required for calculating RMSDI.For any DI, it is important to
determine the boundaries of its applicability. RMSDI tested in
the arid areas demonstrates a good agreement with the data
(own and from weather stations) on field measurements of W .
As shown in Fig. 4 and Table II, RMSDI operating in the range
W = 0 − Wmax can also be used to detect waterlogged areas.
At high values of W, the developed algorithm ensures the
results close to WSMOS and WNF (Figs. 5 and 6). For the areas
with high vegetation biomass (forest, shrubs, sunflower and
corn crops), the necessity in using the algorithms [33] for data
correction may arise.

The applicability of RMSDI to different soil types in dif-
ferent geographic areas has been not studied yet. The limited
use of the developed algorithm can be associated with very
low or very high values of Wt for stony, sandy (Wt ≤ 0.02)
and clay soils (Wt ≥ 0.30).

V. CONCLUSION

Accuracy in remote identification of W is largely limited
since different types of the underlying surface (water body,
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forest, soil) hit the radiometer pixel, the dimensions of which
are smaller than its resolution.

In contrast to other similar indices, RMSDI qualitatively
assesses drought with allowance made for dielectric properties
of specific soils. A reliable use of RMSDI depends on the
determined accuracy of dependencies n(W ), κ(W ), χ(W ),
χt , Wt .

The advantage of RMSDI is its ease of use: 1) RMSDI
is calculated from the available SMOS and MODIS data;
2) evaluation of input parameters χ0, χt , χw is implemented
via the standard definition of ρdry, Wt ; and 3) values of χw

for different soils are within the error. Seasonal RMSDI-based
analysis of the intensity and duration of droughts is feasible
due to the satellite data accumulated for the period of study
(the daily data is not strictly necessary).
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